
Towards a Nonvolatile Implementation of Neander,
an Accumulator Based 8-bit Processor

Bruna C. Cagliari, Paulo F. Butzen and Raphael M. Brum
Departamento de Engenharia Elétrica

Universidade Federal do Rio Grande do Sul
Av. Osvaldo Aranha, 103 - 90035-190 Porto Alegre, RS, Brazil
bccagliari@inf.ufrgs.br, paulo.butzen@ufrgs.br, brum@ufrgs.br

Abstract—The rise of the Internet of Things (IoT) and the
constant growth of portable electronics have leveraged the
concern with energy consumption due to the use of batteries
in these devices. The nonvolatile memory (NVM) emerged as a
solution to mitigate the problem due to its ability to retain data
on sleep mode without a power supply. Nonvolatile processors
(NVPs), in turn, have improved performance in centralized NVM
architectures, providing nonvolatile flip-flops (NVFFs) that store
the system states in parallel, allowing a quicker resumption of
the system after power on. Neander is a hypothetical processor
created for educational purposes. This work proposes to validate
the first step to implement the nonvolatile Neander: describe
it through the Register Transfer Level (RTL) design — which
was successfully performed. This approach was made possible by
separating the combinational logic, implemented through control
signals, from the sequential logic composed by the analog D flip-
flops at the transistor level.

Index Terms—Register Transfer Level (RTL), nonvolatile pro-
cessor (NVP), Neander

I. INTRODUCTION

The growth of the Internet of Things (IoT) has increased
a search for efficient energy solutions [1]. Energy harvesting
has become a viable solution for self-powered systems, thus
replacing batteries and providing remarkably long life, negligi-
ble maintenance cost and sustainable factor [2]. However, the
energy from the environment is inherently unstable, causing
great concern about data loss [2]. The nonvolatile processor
(NVP) is proposed as a way to deal with unexpected failures,
allowing the use of intermittent sources[2].

NVP mitigates energy and performance overheads in sys-
tems with centralized nonvolatile memory (NVM) [3]. The
NVP has nonvolatile flip-flops (NVFFs) that store the system
states every n cycles, being able to recall pre-stored data after
a suspension or failure [4]. Backing up and restoring all states
in parallel, the NVP enables a quick resumption [4].

The increasing use of portable electronic devices causes a
new concern about battery extension [3]. The use of NVP
devices allows the memory cell to maintain the states on
sleep mode without the need for energy, demonstrating a great
advantage [3].

Due to their qualities, NVPs have been widely investigated
[3]. In 2012, Wang et al. [4] presented the first fabricated
nonvolatile processor based on ferroelectric flip-flops. After
that, Koike et al. in 2013 [5] presented an evaluation of a
nonvolatile microprocessor unit (MPU) based on STT-MRAM.

Neander [6] is a hypothetical processor created for edu-
cational purposes. The final objective of this project is to
implement a nonvolatile Neander. NVMs are still experimental
technologies, and the behavior of nonvolatile cells must be
carefully tuned to match the desired specification. CMOS logic
behavior, on the other hand, is well-known and reliable. For
this reason, we chose to implement the NVFFs in circuit-level,
while keeping a high-level abstraction for combinational logic.
This work’s proposal is to validate a mixed-signal Neander
implementation, combining an analog model for flip-flops with
a purely digital implementation of the Neander’s random logic.

This paper is organized as follows: In Section II, important
concepts are presented for the understanding of this work. The
work proposal is presented in Section III and the Section IV
shows a brief overview of the combinational implementation
proposed. Results are in Section V and the conclusions and
future work are presented in Section VI.

II. BACKGROUND

A. Neander

Neander is a simple hypothetical processor designed to
introduce undergraduates to computer architecture. In its sim-
plicity it has a small set of 11 instructions and two status
registers: negative (N) and zero (Z) used in conditional bypass
operations. Fig. 1 [7] illustrates the Neander architecture.

Fig. 1. Neander architecture (adapted from [7])

Alessandro Girardi


Alessandro Girardi
20th Microelectronics Student Forum - August 26-28, 2020



Neander is formed by a memory, a decoder, an accumulator
(AC), an arithmetic logic unit (ALU) that performs basic
operations on the accumulator, a multiplexer (MUX) and a
program counter (PC) which points to the current memory
address. There are also a number of registers: a Memory
Address Register (REM), a Memory Data Register (RDM) an
Instruction Register (RI) and a State NZ Register (evaluates
whether AC is negative or zero). All these components operate
together through control signals determined by the Control
Unit that guarantee the correct logic functioning.

Data is 8-bit wide and represented in two’s complement.
There is only one addressing mode: direct. All instructions
have at least one byte, where the first four bits indicate the
instruction opcode (operation code) and the last ones don’t
matter. In STA, LDA, ADD, AND, OR statements the second
byte indicates the memory address of the operand. In the JMP,
JN and JZ instructions, the second byte indicates the memory
address to be pointed by the PC. In NOP, NOT and HLT
statements there is not a second byte. Table 1 presents the
instructions, respective opcodes and descriptions.

TABLE I
INSTRUCTIONS OF NEANDER

Opcode Mnemonic Description
0000 NOP Initializes memory
0001 LDA AC ← Memory Data
0010 STA Memory ← AC
0011 ADD AC ← AC + Memory Data
0100 OR AC ← AC OR Memory Data
0101 AND AC ← AC AND Memory Data
0110 NOT AC ← NOT AC
1000 JMP PC ← Memory Data
1001 JN If AC < 0 then PC ← Memory Data
1010 JZ If AC = 0 then PC ← Memory Data
1111 HLT Ends execution

To illustrate the Neander operation, the data flow associated
to the ADD operation is described below. When the PC points
to the memory address where the ADD instruction is located,
the opcode of the instruction will pass from memory to RI.
After the operation is identified, the counter will add one
more to its output so that the next memory address to be
read will indicates the operand location. The memory will
read the second byte of the instruction and the MUX will
pass the memory out to the REM. After that, the memory will
receive the operand address and then the data located will be
transferred to the ALU and added to the accumulator content.

B. Magnetic Tunnel Junction

Magnetoresistive random access memory (MRAM) is one
of the most promising spintronics applications [8]. It was the
first commercial use of the magnetic tunnel junction (MTJ) [9],
the nonvolatile spintronic device that can store data without a
power supply and is the key technology in each memory cell
[10].

MTJ is basically composed of two ferromagnetic layers,
one fixed and the other one free, separated by a very thin
tunnel barrier (∼ 1 nm) [9]. The relative orientation of the

two ferromagnetic layer determines the variable resistance
of the device: low (parallel) or high (antiparallel) [9]. The
high resistance represents the logical value ’1’ and the low
resistance represents the ’0’ logical value [9].

The switching methods of magnetic state influence directly
the power, speed and area performance of hybrid MTJ / CMOS
circuits [11]. The magnetic tunneling junction based on the
spin transfer torque (STT-MTJ) is the most researched MTJ
variant and one of the most promising MRAM technolo-
gies, presenting low energy consumption, compact design and
CMOS compatibility [10], [12]. The operation of the STT-
MTJ is illustrated in Fig. 2 [13]. To change the magnetization
state of MTJ in this variant, the switching current (I) is passed
through the device [13]. The MTJ state changes from parallel
(P) to antiparallel (AP) if the forward biased current is greater
than the critical current (Icrit) and its state will return if the
reverse biased current is greater than the critical current [13].

Fig. 2. (a) STT-MTJ structure and state change diagram; and (b) V-R curve
of STT-MTJ device, both published in [13]

The hybrid integration of spintronic devices, such as MTJs,
with CMOS (Complementary metal oxide semiconductor)
technologies is of great importance due to the viability of
ultra-low power solutions, increasingly necessary due to the
growth of IoT and the use of portable electronics [1].

C. Nonvolatile Flip-Flops

NVFFs are key memory cells in NVPs, integrating CMOS
technologies with a nonvolatile device, such as an MTJ [2]. It
is also a promising solution to implement zero standby power
dissipation and instant on/off of a system-on-a-chip [12]. One
of its great advantages is the possibility of being disconnected
from the power supply on sleep mode without losing the stored
data, reducing the leakage current and energy dissipation [14].

There also 3 more modes besides the sleep one: latch, write
and read modes [12]. Due to the relevance of the STT-MTJ,
it will be considered as the nonvolatile device in the example.
During latch mode, a NVFF operates as a conventional flip-
flop [12]. In the write mode, the latched data is written into
the two MTJs with opposite states before the system power
is turned off [12]. The reading of the data can be made by
equalizing the voltages of the left and right branches of the
latch, moving it to a metastable state [10]. After leave it, the
state of MTJ resistances will determine the stable state [10].
An other way to read is to pass a read current through the



device and compare it to a reference current, but this approach
requires an additional circuit [12].

NVFF can be presented in two different structures: merged
latch and sensing circuit (MLS) and separated latch and sens-
ing circuit (SLS) [12]. STT-MTJ variant has great scalability,
as the write current decreases in proportional to the size of
the MTJ [12]. However, with a lower critical current, it also
becomes a greater problem to pass a read current that does
not cause any switching [12]. The SLS structure emerged
so that the latch and the sensing circuit could be optimized
simultaneously, in order to circumvent the STT-MTJ problem
with the reading current [12].

D. Rollback Scheme

For a processor to be considered nonvolatile, it must have
both abilities: Instant on / off (shutdown and return to the ex-
ecution from the previously saved state) and Backward Error-
Recovery (recover from an execution error). [10] Rollback is
the technique that supports these abilities.

Every n cycles it is possible to make a checkpoint that
consists of storing the current states of the processor [10].
If the processor goes through shutdown or if a fault has been
found, the rollback process is triggered and the processor will
receive the states of the last checkpoint considered safe [10].

III. WORK PROPOSAL

To implement the nonvolatile Neander processor, the first
step is to refactor Neander in combinational logic. The objec-
tive of this work is to present the combinational implementa-
tion of the Neander through the RTL design abstraction. RTL
code is described as a synchronous circuit in terms of analog
registers and combinational logic between them. Hardware
description languages (HDLs) were used to create high-level
representations of a circuit, making the complexity of the
project more manageable. The use of the RTL design requires
separate the combinational logic from the sequential logic.

The sequential logic of the Neander implementation com-
prises analog D-type flip-flop (DFF) that act as registers for the
system context. In the adopted configuration, the DFF passes
the input on rising clock edge and keeps the same output
the rest of the time, unless the reset receives ’0’ which will
force the output to be ’0’. There are signals responsible for
all inputs of the registers. These signals are determined by the
logic presented in Neander and depends on the operation to
be performed, the memory position and the current state of
the operation.

The combinational logic is the part that defines the signals
that will determine the inputs of the registers, keeping all
states consistent. It is essential that it is combinational so that
the system can be turned off and resumed using nonvolatile
memory cells since this logic depends only on the current
inputs that, in this case, would be provide by the nonvolatile
registers.

IV. EXPERIMENTAL SETUP

The combinational implementation of the Neander was
based on assign statements. The equation for assign statement
is presented bellow. As a designation statement continues,
whenever the expression on the right undergoes any change,
the expression on the left is immediately changed.

assign < net expression > = < expression of different
signals or constant value >

The assign statements makes it possible to determine the
load signals and the inputs of the registers using the ternary
conditional operator. A simple example is the operation of
the Instructions Register (RI) described in combinational logic
presented below, where: loadRI represents the load signal that
decides the input of the register; state corresponds to one of the
eight states implemented that guarantee the correct operation
of the Neander; smem is the output of memory; e ri is the
input of the RI and sri is the output. In the second logic state of
the Neander, the loadIR receives a high signal so the output of
the memory is loaded in this register. This output corresponds
to the opcode of the instruction that must be executed. When
the loadRI is off, the input of the DFF must be kept the same.
Assign statements were also used in decisions corresponding
to ALU and MUX.

assign loadRI = (state == 2) ? 1 : 0;
assign e ri = (loadRI == 1) ? smem : sri;

The analog DFFS cells were implemented using NCSU
FreePDK 45nM synthetic CMOS technology. Analog to digital
converter (ADC) and digital to analog converter (DAC) were
used as bridges between the analog modules of the sequential
part and the digital modules of the combinational part.

For verification, Cadence Design Systems Incisive and
Spectre tool sets were used. Due to the mix of analog and
digital signals, all modules except ALU, MUX and memory
were implemented in Verilog-AMS, which includes analog and
mixed-signal extensions (AMS).

V. RESULTS

All the 11 operations of the combinational Neander imple-
mentation were successfully validated through the RTL design.
As the ADD operation was briefly explained in Section II, it
was chosen for a representative simulation.

Table 2 presents the part of the memory used in this
simulation and a brief explanation of each line. Fig. 3 shows
the representative simulation: the operation of adding the
value 248 (-8 in signed decimal) to the zeroed accumulator.
Relevant signals that facilitate the reader’s understanding were
considered. The signals are inputs (e ac, e pc and e ri)
and outputs (sac, snz, spc, sri) of the registers, load signals
(loadAC, loadNZ, loadPC and loadRI), the output of the
memory (smem), the State and the incPC signal which is
triggered when the PC output must be increased by one. The
simulation presented in Fig. 3 took 8 nanoseconds and the data
are represented in unsigned decimal. In Table 2 the data are
represented in binary.



TABLE II
MEMORY ADDRESSES USED IN THE REPRESENTATIVE SIMULATION

Memory address Data Data meaning
0 00110000 ADD
1 00000101 Operand address
2 11110000 HLT
3 00000000 NOP
4 00000000 NOP
5 11111000 Operand

Fig. 3. Mixed-signal simulation of ADD operation.

Fig. 4 represents the sequential logic of the Neander through
a mixed-signal simulation, showing the correctness of the DFF
and ADC executions. In this simulation, a clock is the analog
clock signal and the affd ac[7] is the first bit in the analog
input of the AC that appears on the output in affo ac[7] and
converted to a digital signal in ffo ac[7] after a clock cycle.

Fig. 4. Mixed-signal simulation validating the DFF and ADC executions.

VI. CONCLUSIONS AND FUTURE WORK

Nonvolatile processors rely on nonvolatile memory cells that
capture system states in parallel, making a quick recovery
of the system context after power on. Thanks to its non-
volatile factor, NVP is also energy efficient. In this work, a
combinational implementation based on RTL was presented
in order to complete the first stage for the implementation
of the nonvolatile Neander. In addition, some concepts were
presented to understand the proposal and some implementation
techniques for combinational logic were discuss.

In the future, a NVFF cell will be validated using the Spice
MTJ model from Harms et al. [9]. Once this validation has

been made, it will be possible to make progress by placing the
nonvolatile registers acting in parallel with the volatile regis-
ters. Then the rollback scheme will be implemented through
checkpoints, making possible to implement the hypothetical
nonvolatile Neander processor.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the support of the
National Council for Scientific and Technological Develop-
ment (CNPq) and the State of Rio Grande do Sul Research
Foundation (FAPERGS).

REFERENCES

[1] T. Hanyu, T. Endoh, D. Suzuki, H. Koike, Y. Ma, N. Onizawa, M. Natsui,
S. Ikeda, and H. Ohno, “Standby-power-free integrated circuits using
mtj-based vlsi computing,” Proceedings of the IEEE, vol. 104, no. 10,
pp. 1844–1863, 2016. doi: 10.1109/jproc.2016.2574939

[2] F. Su, Z. Wang, J. Li, M.-F. Chang, and Y. Liu, “Design of nonvolatile
processors and applications,” in 2016 IFIP/IEEE International Confer-
ence on Very Large Scale Integration (VLSI-SoC). IEEE, 2016. doi:
10.1109/vlsi-soc.2016.7753543 pp. 1–6.

[3] F. Su, K. Ma, X. Li, T. Wu, Y. Liu, and V. Narayanan, “Nonvolatile
processors: Why is it trending?” in Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2017. IEEE, 2017. doi:
10.23919/DATE.2017.7927131 pp. 966–971.

[4] Y. Wang, Y. Liu, S. Li, D. Zhang, B. Zhao, M.-F. Chiang, Y. Yan,
B. Sai, and H. Yang, “A 3us wake-up time nonvolatile processor
based on ferroelectric flip-flops,” in 2012 Proceedings of the ESSCIRC
(ESSCIRC). IEEE, 2012. doi: 10.1109/esscirc.2012.6341281 pp. 149–
152.

[5] H. Koike, T. Ohsawa, S. Ikeda, T. Hanyu, H. Ohno, T. Endoh,
N. Sakimura, R. Nebashi, Y. Tsuji, A. Morioka et al., “A power-gated
mpu with 3-microsecond entry/exit delay using mtj-based nonvolatile
flip-flop,” in 2013 IEEE Asian Solid-State Circuits Conference (A-
SSCC). IEEE, 2013. doi: 10.1109/asscc.2013.6691046 pp. 317–320.

[6] R. F. Weber, Fundamentos de arquitetura de computadores. Sagra
Luzzatto, 2000.

[7] F. R. Schneider, R. E. Poli, D. Barden, D. K. Leonel, D. A. Fiorentin,
F. M. Trindade, F. S. de Vasconcellos, M. C. d. B. O. Neto, and R. P.
Ribas, “Design of a 4-bit processor for evaluating of the e/d nmos
technology from ccs/unicamp,” in 20th Microelectronics Students Forum,
2004.

[8] W. Zhao, E. Belhaire, C. Chappert, B. Dieny, and G. Prenat, “Tas-mram-
based low-power high-speed runtime reconfiguration (rtr) fpga,” TRETS,
vol. 2, 06 2009. doi: 10.1145/1534916.1534918

[9] J. D. Harms, F. Ebrahimi, X. Yao, and J.-P. Wang, “Spice macromodel
of spin-torque-transfer-operated magnetic tunnel junctions,” IEEE trans-
actions on electron devices, vol. 57, no. 6, pp. 1425–1430, 2010. doi:
doi:10.1109/ted.2010.2047073

[10] R. M. Brum, “On the design of hybrid cmos and magnetic memories,
with applications to reconfigurable architectures,” Ph.D. dissertation,
University of Montpellier, Montpellier, France, 2014.

[11] L.-B. Faber, W. Zhao, J.-O. Klein, T. Devolder, and C. Chappert,
“Dynamic compact model of spin-transfer torque based magnetic tunnel
junction (mtj),” in 2009 4th International Conference on Design &
Technology of Integrated Systems in Nanoscal Era. IEEE, 2009. doi:
10.1109/dtis.2009.4938040 pp. 130–135.

[12] T. Na, K. Ryu, J. Kim, S. H. Kang, and S.-O. Jung, “A comparative study
of stt-mtj based non-volatile flip-flops,” in 2013 IEEE International
Symposium on Circuits and Systems (ISCAS2013). IEEE, 2013. doi:
10.1109/iscas.2013.6571794 pp. 109–112.

[13] Y. Shang, W. Fei, and H. Yu, “Analysis and modeling of internal state
variables for dynamic effects of nonvolatile memory devices,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 9,
pp. 1906–1918, 2012. doi: 10.1109/tcsi.2011.2180441

[14] M. Kazemi, E. Ipek, and E. G. Friedman, “Energy-efficient nonvolatile
flip-flop with subnanosecond data backup time for fine-grain power
gating,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 62, no. 12, pp. 1154–1158, 2015. doi: 10.1109/tcsii.2015.2468931


